EvolvingObjects
|
00001 // -*- mode: c++; c-indent-level: 4; c++-member-init-indent: 8; comment-column: 35; fill-column: 80; -*- 00002 00003 //----------------------------------------------------------------------------- 00004 // eoCMABreed 00005 // (c) Maarten Keijzer 2005 00006 /* 00007 This library is free software; you can redistribute it and/or 00008 modify it under the terms of the GNU Lesser General Public 00009 License as published by the Free Software Foundation; either 00010 version 2 of the License, or (at your option) any later version. 00011 00012 This library is distributed in the hope that it will be useful, 00013 but WITHOUT ANY WARRANTY; without even the implied warranty of 00014 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 00015 Lesser General Public License for more details. 00016 00017 You should have received a copy of the GNU Lesser General Public 00018 License along with this library; if not, write to the Free Software 00019 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 00020 00021 */ 00022 //----------------------------------------------------------------------------- 00023 00024 00025 #ifndef _EOCMABREED_H 00026 #define _EOCMABREED_H 00027 00028 #include <eoBreed.h> 00029 #include <eoVector.h> 00030 #include <es/CMAState.h> 00031 00032 #include <algorithm> 00033 00035 template <class FitT> 00036 class eoCMABreed : public eoBreed< eoVector<FitT, double> > { 00037 00038 eo::CMAState& state; 00039 unsigned lambda; 00040 00041 typedef eoVector<FitT, double> EOT; 00042 00043 public: 00044 eoCMABreed(eo::CMAState& state_, unsigned lambda_) : state(state_), lambda(lambda_) {} 00045 00046 void operator()(const eoPop<EOT>& parents, eoPop<EOT>& offspring) { 00047 00048 // two temporary arrays of pointers to store the sorted population 00049 std::vector<const EOT*> sorted(parents.size()); 00050 00051 // mu stores population as vector (instead of eoPop) 00052 std::vector<const std::vector<double>* > mu(parents.size()); 00053 00054 parents.sort(sorted); 00055 for (unsigned i = 0; i < sorted.size(); ++i) { 00056 mu[i] = static_cast< const std::vector<double>* >( sorted[i] ); 00057 } 00058 00059 // learn 00060 state.reestimate(mu, sorted[0]->fitness(), sorted.back()->fitness()); 00061 00062 if (!state.updateEigenSystem(10)) { 00063 std::cerr << "No good eigensystem found" << std::endl; 00064 } 00065 00066 // generate 00067 offspring.resize(lambda); 00068 00069 for (unsigned i = 0; i < lambda; ++i) { 00070 state.sample( static_cast< std::vector<double>& >( offspring[i] )); 00071 offspring[i].invalidate(); 00072 } 00073 00074 } 00075 }; 00076 00077 00078 #endif