EvolvingObjects
|
00001 // -*- mode: c++; c-indent-level: 4; c++-member-init-indent: 8; comment-column: 35; -*- 00002 00003 //----------------------------------------------------------------------------- 00004 // make_op.h 00005 // (c) Maarten Keijzer, Marc Schoenauer and GeNeura Team, 2001 00006 /* 00007 This library is free software; you can redistribute it and/or 00008 modify it under the terms of the GNU Lesser General Public 00009 License as published by the Free Software Foundation; either 00010 version 2 of the License, or (at your option) any later version. 00011 00012 This library is distributed in the hope that it will be useful, 00013 but WITHOUT ANY WARRANTY; without even the implied warranty of 00014 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 00015 Lesser General Public License for more details. 00016 00017 You should have received a copy of the GNU Lesser General Public 00018 License along with this library; if not, write to the Free Software 00019 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 00020 00021 Contact: todos@geneura.ugr.es, http://geneura.ugr.es 00022 Marc.Schoenauer@polytechnique.fr 00023 mkeijzer@dhi.dk 00024 */ 00025 //----------------------------------------------------------------------------- 00026 00027 #ifndef _make_op_h 00028 #define _make_op_h 00029 00030 // the operators 00031 #include <eoOp.h> 00032 #include <eoGenOp.h> 00033 #include <eoCloneOps.h> 00034 #include <eoOpContainer.h> 00035 // combinations of simple eoOps (eoMonOp and eoQuadOp) 00036 #include <eoProportionalCombinedOp.h> 00037 00038 // the specialized GA stuff 00039 #include <ga/eoBit.h> 00040 #include <ga/eoBitOp.h> 00041 // also need the parser and param includes 00042 #include <utils/eoParser.h> 00043 #include <utils/eoState.h> 00044 00045 00047 // canonical (crossover + mutation) only at the moment // 00048 00049 /* 00050 * This function builds the operators that will be applied to the bitstrings 00051 * 00052 * It uses a parser (to get user parameters) and a state (to store the memory) 00053 * the last argument is an individual, needed for 2 reasons 00054 * it disambiguates the call after instanciations 00055 * some operator might need some private information about the indis 00056 * 00057 * This is why the template is the complete EOT even though only the fitness 00058 * is actually templatized here: the following only applies to bitstrings 00059 * 00060 * Note : the last parameter is an eoInit: if some operator needs some info 00061 * about the gneotypes, the init has it all (e.g. bounds, ...) 00062 * Simply do 00063 * EOT myEO; 00064 * _init(myEO); 00065 * and myEO is then an ACTUAL object 00066 * 00067 * @ingroup bitstring 00068 * @ingroup Builders 00069 */ 00070 00071 template <class EOT> 00072 eoGenOp<EOT> & do_make_op(eoParser& _parser, eoState& _state, eoInit<EOT>& _init) 00073 { 00074 // this is a temporary version, while Maarten codes the full tree-structured 00075 // general operator input 00076 // BTW we must leave that simple version available somehow, as it is the one 00077 // that 90% people use! 00078 eoValueParam<std::string>& operatorParam = _parser.createParam(std::string("SGA"), "operator", "Description of the operator (SGA only now)", 'o', "Variation Operators"); 00079 00080 if (operatorParam.value() != std::string("SGA")) 00081 throw std::runtime_error("Only SGA-like operator available right now\n"); 00082 00083 // now we read Pcross and Pmut, 00084 // the relative weights for all crossovers -> proportional choice 00085 // the relative weights for all mutations -> proportional choice 00086 // and create the eoGenOp that is exactly 00087 // crossover with pcross + mutation with pmut 00088 00089 eoValueParam<double>& pCrossParam = _parser.createParam(0.6, "pCross", "Probability of Crossover", 'C', "Variation Operators" ); 00090 // minimum check 00091 if ( (pCrossParam.value() < 0) || (pCrossParam.value() > 1) ) 00092 throw std::runtime_error("Invalid pCross"); 00093 00094 eoValueParam<double>& pMutParam = _parser.createParam(0.1, "pMut", "Probability of Mutation", 'M', "Variation Operators" ); 00095 // minimum check 00096 if ( (pMutParam.value() < 0) || (pMutParam.value() > 1) ) 00097 throw std::runtime_error("Invalid pMut"); 00098 00099 // the crossovers 00101 // the parameters 00102 eoValueParam<double>& onePointRateParam = _parser.createParam(double(1.0), "onePointRate", "Relative rate for one point crossover", '1', "Variation Operators" ); 00103 // minimum check 00104 if ( (onePointRateParam.value() < 0) ) 00105 throw std::runtime_error("Invalid onePointRate"); 00106 00107 eoValueParam<double>& twoPointsRateParam = _parser.createParam(double(1.0), "twoPointRate", "Relative rate for two point crossover", '2', "Variation Operators" ); 00108 // minimum check 00109 if ( (twoPointsRateParam.value() < 0) ) 00110 throw std::runtime_error("Invalid twoPointsRate"); 00111 00112 eoValueParam<double>& uRateParam = _parser.createParam(double(2.0), "uRate", "Relative rate for uniform crossover", 'U', "Variation Operators" ); 00113 // minimum check 00114 if ( (uRateParam.value() < 0) ) 00115 throw std::runtime_error("Invalid uRate"); 00116 00117 // minimum check 00118 // bool bCross = true; // not used ? 00119 if (onePointRateParam.value()+twoPointsRateParam.value()+uRateParam.value()==0) 00120 { 00121 std::cerr << "Warning: no crossover" << std::endl; 00122 // bCross = false; 00123 } 00124 00125 // Create the CombinedQuadOp 00126 eoPropCombinedQuadOp<EOT> *ptCombinedQuadOp = NULL; 00127 eoQuadOp<EOT> *ptQuad = NULL; 00128 // 1-point crossover for bitstring 00129 ptQuad = new eo1PtBitXover<EOT>; 00130 _state.storeFunctor(ptQuad); 00131 ptCombinedQuadOp = new eoPropCombinedQuadOp<EOT>(*ptQuad, onePointRateParam.value()); 00132 00133 // uniform crossover for bitstring 00134 ptQuad = new eoUBitXover<EOT>; 00135 _state.storeFunctor(ptQuad); 00136 ptCombinedQuadOp->add(*ptQuad, uRateParam.value()); 00137 00138 // 2-points xover 00139 ptQuad = new eoNPtsBitXover<EOT>; 00140 _state.storeFunctor(ptQuad); 00141 ptCombinedQuadOp->add(*ptQuad, twoPointsRateParam.value()); 00142 00143 // don't forget to store the CombinedQuadOp 00144 _state.storeFunctor(ptCombinedQuadOp); 00145 00146 // the mutations 00148 // the parameters 00149 eoValueParam<double> & pMutPerBitParam = _parser.createParam(0.01, "pMutPerBit", "Probability of flipping 1 bit in bit-flip mutation", 'b', "Variation Operators" ); 00150 // minimum check 00151 if ( (pMutPerBitParam.value() < 0) || (pMutPerBitParam.value() > 0.5) ) 00152 throw std::runtime_error("Invalid pMutPerBit"); 00153 00154 eoValueParam<double> & bitFlipRateParam = _parser.createParam(0.01, "bitFlipRate", "Relative rate for bit-flip mutation", 's', "Variation Operators" ); 00155 // minimum check 00156 if ( (bitFlipRateParam.value() < 0) ) 00157 throw std::runtime_error("Invalid bitFlipRate"); 00158 00159 // oneBitFlip 00160 eoValueParam<double> & oneBitRateParam = _parser.createParam(0.01, "oneBitRate", "Relative rate for deterministic bit-flip mutation", 'd', "Variation Operators" ); 00161 // minimum check 00162 if ( (oneBitRateParam.value() < 0) ) 00163 throw std::runtime_error("Invalid oneBitRate"); 00164 00165 // kBitFlip 00166 eoValueParam<unsigned> & kBitParam = _parser.createParam((unsigned)1, "kBit", "Number of bit for deterministic k bit-flip mutation", 0, "Variation Operators" ); 00167 // minimum check 00168 if ( ! kBitParam.value() ) 00169 throw std::runtime_error("Invalid kBit"); 00170 00171 eoValueParam<double> & kBitRateParam = _parser.createParam(0.0, "kBitRate", "Relative rate for deterministic k bit-flip mutation", 0, "Variation Operators" ); 00172 // minimum check 00173 if ( (kBitRateParam.value() < 0) ) 00174 throw std::runtime_error("Invalid kBitRate"); 00175 00176 // minimum check 00177 // bool bMut = true; // not used ? 00178 if (bitFlipRateParam.value()+oneBitRateParam.value()==0) 00179 { 00180 std::cerr << "Warning: no mutation" << std::endl; 00181 // bMut = false; 00182 } 00183 00184 // Create the CombinedMonOp 00185 eoPropCombinedMonOp<EOT> *ptCombinedMonOp = NULL; 00186 eoMonOp<EOT> *ptMon = NULL; 00187 00188 // standard bit-flip mutation for bitstring 00189 ptMon = new eoBitMutation<EOT>(pMutPerBitParam.value()); 00190 _state.storeFunctor(ptMon); 00191 // create the CombinedMonOp 00192 ptCombinedMonOp = new eoPropCombinedMonOp<EOT>(*ptMon, bitFlipRateParam.value()); 00193 00194 // mutate exactly 1 bit per individual 00195 ptMon = new eoDetBitFlip<EOT>; 00196 _state.storeFunctor(ptMon); 00197 ptCombinedMonOp->add(*ptMon, oneBitRateParam.value()); 00198 00199 // mutate exactly k bit per individual 00200 ptMon = new eoDetBitFlip<EOT>(kBitParam.value()); 00201 _state.storeFunctor(ptMon); 00202 ptCombinedMonOp->add(*ptMon, kBitRateParam.value()); 00203 00204 _state.storeFunctor(ptCombinedMonOp); 00205 00206 // now build the eoGenOp: 00207 // to simulate SGA (crossover with proba pCross + mutation with proba pMut 00208 // we must construct 00209 // a sequential combination of 00210 // with proba 1, a proportional combination of 00211 // a QuadCopy and our crossover 00212 // with proba pMut, our mutation 00213 00214 // the crossover - with probability pCross 00215 eoProportionalOp<EOT> * cross = new eoProportionalOp<EOT> ; 00216 _state.storeFunctor(cross); 00217 ptQuad = new eoQuadCloneOp<EOT>; 00218 _state.storeFunctor(ptQuad); 00219 cross->add(*ptCombinedQuadOp, pCrossParam.value()); // user crossover 00220 cross->add(*ptQuad, 1-pCrossParam.value()); // clone operator 00221 00222 // now the sequential 00223 eoSequentialOp<EOT> *op = new eoSequentialOp<EOT>; 00224 _state.storeFunctor(op); 00225 op->add(*cross, 1.0); // always crossover (but clone with prob 1-pCross 00226 op->add(*ptCombinedMonOp, pMutParam.value()); 00227 00228 // that's it! 00229 return *op; 00230 } 00231 #endif