edoSamplerNormalMono.h
00001 /*
00002 The Evolving Distribution Objects framework (EDO) is a template-based,
00003 ANSI-C++ evolutionary computation library which helps you to write your
00004 own estimation of distribution algorithms.
00005 
00006 This library is free software; you can redistribute it and/or
00007 modify it under the terms of the GNU Lesser General Public
00008 License as published by the Free Software Foundation; either
00009 version 2.1 of the License, or (at your option) any later version.
00010 
00011 This library is distributed in the hope that it will be useful,
00012 but WITHOUT ANY WARRANTY; without even the implied warranty of
00013 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
00014 Lesser General Public License for more details.
00015 
00016 You should have received a copy of the GNU Lesser General Public
00017 License along with this library; if not, write to the Free Software
00018 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
00019 
00020 Copyright (C) 2010 Thales group
00021 */
00022 /*
00023 Authors:
00024     Johann Dréo <johann.dreo@thalesgroup.com>
00025     Caner Candan <caner.candan@thalesgroup.com>
00026 */
00027 
00028 #ifndef _edoSamplerNormalMono_h
00029 #define _edoSamplerNormalMono_h
00030 
00031 #include <cmath>
00032 
00033 #include <utils/eoRNG.h>
00034 
00035 #include "edoSampler.h"
00036 #include "edoNormalMono.h"
00037 #include "edoBounder.h"
00038 
00044 template < typename EOT, typename D = edoNormalMono< EOT > >
00045 class edoSamplerNormalMono : public edoSampler< D >
00046 {
00047 public:
00048     typedef typename EOT::AtomType AtomType;
00049 
00050     edoSamplerNormalMono( edoRepairer<EOT> & repairer ) : edoSampler< D >( repairer) {}
00051 
00052     EOT sample( edoNormalMono<EOT>& distrib )
00053     {
00054         unsigned int size = distrib.size();
00055         assert(size > 0);
00056 
00057         // The point we want to draw
00058         // (coordinates in n dimension)
00059         // x = {x1, x2, ..., xn}
00060         EOT solution;
00061         
00062         // Sampling all dimensions
00063         for (unsigned int i = 0; i < size; ++i) {
00064             AtomType mean = distrib.mean()[i];
00065             AtomType variance = distrib.variance()[i];
00066             // should use the standard deviation, which have the same scale than the mean
00067             AtomType random = rng.normal(mean, sqrt(variance) );
00068 
00069             solution.push_back(random);
00070         }
00071 
00072         return solution;
00073     }
00074 };
00075 
00076 #endif // !_edoSamplerNormalMono_h
 All Classes Functions Variables Typedefs